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Abstract

The thermal model for transverse heat flow of having single filament in a unit cell
is extended. In this model, we proposed that two circular filaments in a unit cell of square
packing array and obtained the transverse thermal conductivity of an unidirectional
material.

I. Thermal Model

Predicting equivalent thermal conductivity of transverse flow in unidirectional
composite materials is of interest in composite research. An expression for thermal
conductivity can be obtained based on physical principle, either from the point of view of
equivalent thermal flux or from equivalent temperature field.  By considering the fibers as
square slabs or circular cylinders embedded in the matrix, the simple rule of mixture can be
applied to obtain the equivalent thermal conductivity. In 1967, Springer and Tsai [1]
proposed a thermal model for transverse flow that is a compound model including both
serial flow and parallel flow to account for the fiber shape geometry. The thermal model
developed has a single circular filament located in the center of a square packing array.
The resulting expression is in good agreement with experimental work. Recently, this was
extended to an elliptical shaped fiber with the same cross section area as the circular fiber.
It was shown that the transverse composite thermal conductivity depends strongly on the
fiber shape [2]. In this report, an expression is presented for a configuration with two
circular fiber filaments in a unit cell of square packing array. The arrangement is shown as
in Fig.1. One filament is located in the center of the cell and one quarter of the filament
located at each of the four corners of the cell. Assuming that the radius of circular fiber is
r, and the size of the unit cell is 4a2, since there are two filaments per cell, the volume
fraction is

v r af = 2 42 2π / (1)
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Fig . 1  Fundamental elements used in thermal modeling
for fiber radius r ≤ a/2 arrangement

The heat flow is from the left to right and Fig. 1 is symmetrical with respect to
reflection in both x and y directions. To obtain an expression for the thermal conductivity,
it is only necessary to consider the heat flow in the upper half of the cell. The upper cell
is further divided into three regions with limits in the y direction, from 0 to r, r to a-r and
a-r to a respectively, while the limit in x is from -a to a for all regions.  In region 2, there
is only matrix; in regions 1 and 3, there is fiber as well as matrix. As far as the thermal
model is concerned, the same amount of heat is conducted in region 1 and region 3,
because regions 1 and 3 occupy the same area, and contain same shape of fiber. As the
radius of fiber increases from 0 to a / 2 , region 2 decreases to 0, i.e., there is no direct
passage for heat to traverse through the cell without intersecting the fiber.   As r increases

from a / 2  to the maximum, a / 2  shown in Fig. 2, it is necessary to redefine the
regions of interest. Region 1 is now redefined as y=0 to y=a-r; region 2 is redefined as
y=a-r to y=r; region 3 is redefined as y=r to y=a. Following [1], the ratio of transverse
thermal conductivity k22 to the matrix thermal conductivity km  is written as
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where kf is the thermal conductivity of the fiber, r a r B a≤ ≤/ /2 12 2 2 ,  and  
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Notice that B is defined differently than in Ref. [1]. As r increases beyond a / 2 ,
the ratio can be expressed as
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where a a/ /2 2 r  ≤ ≤ . Eq.(4) can be solved readily by numerical quadrature.
Eqs.(2), (3) and (4) can be expressed in terms of volume fraction vf  by relation (1)
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Fig . 2  Fundamental elements used in thermal modeling
for fiber radius r ≥ a/2 arrangement
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II. Comparison of Results

In the following, Eqs. (5), (6) and (7) are used to compute the k2 2/km ratio. These results are
compared to results from reference [1] for the ratio determined as a function of fiber volume
fraction vf. Fig. 3 presents a comparison of the models and data for kf/km equal to  666 and
Fig. 4 presents results for kf/km equal to  4.4 as was done in reference [1]. As expected, the 2
circular fibers per cell model predicts lower values for composite transverse conductivity
than the single fiber models for the most of the range of vf..  The exception is for large kf/km
ratios and extremely high volume fraction where its value is higher than the value predicted
by the single fiber square model, but lower than the single fiber circular cross section
model. The lower values of two fiber model thermal conductivity can be explained in a
qualitative sense; for the same vf, the two fiber model has a more “serial” nature than the
single fiber model, and therefore tends to predict a lower value. In an intuitive sense,
introducing more fibers tends to further partition the matrix, so that the heat conduction
suffers more impedance. On other hand, the two fiber model is a closer match to reality than
the single fiber model because this arrangement allows the fibers to interlace together when
the fiber radius increases beyond a/2, whereas the single fiber model definitely lacks of this
characteristic. The experimental results of Thornburg and Pears [3] published in 1965, are
shown by x’s in Fig. 3 and 4. These results seem to be in better agreement with the single
fiber model when the is kf/km high, but in better agreement with the two fiber model when
kf/km is low. Of course, this is by no means conclusive, and we think this comparison really
opens a new issue. What is clear is the predicted equivalent transverse thermal conductivity
for a given value of volume fraction of the filaments depends upon the adopted models as
clearly demonstrated here. To verify which is the correct model for predicting composite
conductivity, a few carefully controlled experiments are required to establish the data base
and enhance our understanding of the transverse heat conduction phenomenon in
composite. From those experiments and theoretical models, we can gain an improved
understanding of the mechanisms of heat conduction in composites and how to best expand
the existing models for transverse composite conduction.
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Fig. 3 Comparison of composite transverse thermal conductivity from different
models for higher ratio of kf/km.

 

1 

1.5 

2 

2.5 

3 

3.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
v f 

2 circular fibers per cell 
1 circular fiber per cell 
1 square fiber per cell  

   Kf /km =4.4 

X             meas. values K22 

/km 

 x 

x

x 

x 

Fig. 4  Comparison of composite transverse thermal conductivity from different
models for lower ratio of kf/km.
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Nomenclature

2a, 2a = Fiber spacing in x and y direction

B = Dimensionless parameter , B
k
k

m

f

≡ −( )1

Q = average heat flux per unit cell length
vf = volume fraction =2πr2/4a2

k22 = composite thermal conductivity the direction normal to the fibers

km = thermal conductivity of matrix

kf = thermal conductivity of fiber in the direction normal to the fibers
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